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Inorganic clusters continue to attract considerable attention
because they represent the bridge linking molecular and solid
state chemistry and because they are useful tools for under- -
standing the size-dependent physical properties of electronicFigure 1. Molecular structure of Sgde;(SePh)(THF)s (1) with the
materialst While the metal chalcogenide (E, € S, Se, Te) C and H atoms removed and the O atom labels omitted for clarity.

cluster chemistry of the main groftipnd transition metatsis The Sm-Sé" bond lengths range from 2.847(2) to 2.971(2) A and
now firmly established, the analogous chemistry of the lan- average 2.93 A, while the SrBe(Ph) (labeled Sebond lengths range
thanides (Ln) is virtually undeveloped. Structures ot T~ from 2.916(2) to 3.015(2) A and average 2.98 A. Thermal ellipsoids

(TeSi(SiMe)s)¢* and (GMes)sSmsSe1® have been determined, — are shown at the 50% probability level.

but synthetic difficulties have inhibited systematic studies of 5ndq each metal atom is also coordinated to a THF ligand. The
structure-property relationships. The recent descriptions of compound has a UWvis absorption maximum in the visible
molecular Ln chalcogenolate (Ln(ER)E =S, Se, Te; R= spectrum at 341 nm, which is attributable to a ligand (SePh
organic;x = 2, 3) complexe$§,coupled with the well-understood Sé-) to Sm(Ill) charge transfeé®e9 Subsequent syntheses
properties of Lnkg solids, have set a foundation for interpreting implicated “Sm(SePh) as the source of Se in 1, and this

the properties of c_Iuster compounds. In this paper, we outh_ne was confirmed by preparing Sm(SePh) THF and allowing

two new synthetic approaches to lanthanide chalcogenidohe divalent compound to decompose thermally at room
(E, E=S, Se) clusters: €Se bond cleavage by low-valent temperature. This chalcogen-free rddtgives the largest

Ln and the reaction of Ln(SePhyith elemental S. . and cleanest yield of clustdr While there are examples of
The conventional synthetic route to compounds containing (coMes),Sm(ll) cleaving G-O,11 C—Sb2 or C—Bi'3 bonds to
Ln—chalcogenide bonds involves reduction of E or BRih yield molecular products, this is the first example of such

a Ln(ll) corgplex? Accordingly, we initially prepared green  yeactivity in the less-reducing chalcogenolate compounds.
Sm(SePhy'® by reacting Sm with PhSeSePh in THF and then prgjiminary results suggest that the non-redox-active Ln will
reacting the mixture with elemental Se. From this, deep orangegrm similar cluster products.

crystals were obtained, and the air-sensitive product was \while Ln clusters of the heavier chalcogens fSesf) are

identified as SnSe(SePhjATHF)s (1) by low-temperature  rare  the corresponding sulfido clusters are unknown. Such

single-crystal X-ray diffractiofl. Cluster1 (Figure 1) contains  ¢|ysters are particularly interesting as models for Ln ions doped

eight seven-coordinate Sm(lll) ions at the vertices of a cube, jhto sulfide-based semiconductérand fiber optic materials

while the S& atoms cap each of the six faces. The 12 Se |n the course of rationalizing heterometallic Ln/group 14 metal

atoms from the SePh ligands each bridge one of the 12 edgescha|cogenolate structuréswe found reference to thermochemi-
(1) For recent examples, see: (a) Alivisatos, ASRiencel996 271, cal bond strength$ that implied S would insert into LASe

933-7. (b) Brus, L.Appl. Phys. A1991, 53, 465-74. (c) Steigerwald, M. bonds, which we thought could then lead to the preparation of
L. Polyhedron1994 13, 1245. (d) Schaper, A. K.; Jiang, J.; Becker, J. A.
Adv. Mat. 1997, 9, 343. (e) Empedocles, S. A.; Norris, D. J.; Bawendi, M. (9) CompoundL crystallizes in the orthorhombic space grdeipcg with
G. Phys. Re. Lett. 1996 77, 3873-6. a=26.099(7) Ab=22.440(7) Ac=20.002(5) Av=11714(6) B, z

(2) For example, see: (a) Murray, C. B.; Norris, D. J.; Bawendi, M. G. = 4, pcaica = 2.340 g/cn® (Mo Ko radiation at—120 °C). Full-matrix
J. Am. Chem. S0d.993 115 8706-15. (b) Herron, N.; Calabrese, J. C.;  least-squares refinement with 5226 unique observatiers flo(F)] gave

Farneth, W. E.; Wang, YSciencel993 259, 1426-8. (c) Goldstein, A. R(F) = 0.046 and wRf?) = 0.092. Complete crystallographic details are

N.; Escher, C. M.; Alivisatos, A. FSciencel 992 256 1425-7. (d) Colvin, given in the Supporting Information.

V. L.; Goldstein, A. N.; Alivisatos, A. PJ. Am. Chem. Sod 992 114 (10) Synthesis ofl: Under nitrogen, PhSeSePh (recrystallized from

5221-30. (e) Schreiner, B.; Dehnicke, K.; Fenske ZDAnorg. Allg. Chem. hexane; 1.26 g, 4.0 mmol) was added to a Schlenk tube containing Sm

1993 619, 1127-31. powder (0.62 g, 4.1 mmol), Hg (0.050 g, 0.25 mmol), and THF (50 mL).
(3) For example, see: (a) Brennan, J.; Siegrist, T.; Stuczynski, S.; After 1 day, a brown solution with a green precipitate was observed. After

Steigerwald, MJ. Am. Chem. S0d.992 114, 10334-8. (b) Dahl, L. F; 7 days the reaction was filtered, concentrated to 25 mL, and layered with

Johnson, A.; Whoolery, $norg. Chim. Actal994 227, 269-83. (c) Fenske, hexane to give orange crystals (90 mg, 5% based on Se) that lose THF and
D.; Fischer, A Angew. Chem1995 34, 307-9. (d) Mathur, P.; Sekar, P. become amorphous within hours of isolation. The compound did not melt

J. Chem. Soc., S Chem. Commii89§ 727—8. but turned darker orange around 140 and continued to darken with

(4) Cary, D.; Ball, G.; Arnold, JJ. Am. Chem. S0d.995 117, 3492 increasing temperature. Anal. Calcd foro@1240sSesSms: C, 30.3; H,
501. 3.03. Found: C, 28.5; H, 2.80. IR (Nujol): 2925 (s), 2855 (s), 1571 (w),

(5) Evans, W.; Rabe, G.; Ziller, Angew. Chem., Int. Ed. Engl994 1460 (s), 1378 (s), 1262 (w), 1056 (w), 1020 (w), 857 (m), 732 (s), 692
33 2110-1. (m), 662 (m), 465 (m) cmt. In theH NMR spectrum (3 mg in N€Ds, 20

(6) For example, see: (a) Cetinkaya, B.; Hitchcock, P. B.; Lappert, M. °C), only the displaced THF protons (3.64, 1.58) were obsedgg (THF)

F.; Smith, R. GJ. Chem. Soc. Chem. Comb®92 932-3. (b) Berardini, = 341 nm.

M.; Emge, T.; Brennan, J. Gl. Am. Chem. So0d.993 115 8501-2. (c) (11) Takaki, K.; Maruo, M.; Kamata, T.; Makioka, Y.; Fujiwara, ¥.
Strzelecki, A. R.; Likar, C.; Hesel, B. A.; Utz, T.; Lin, M. C.; Bianconi, P. ~ Org. Chem.1996 61, 8332-4.

A. Inorg. Chem1994 33, 5188. (d) Tatsumi, K.; Amemiya, T.; Kawaguchi, (12) Evans, W. J.; Gonzales, S. L.; Ziller, J. WAm. Chem. So&991

H.; Tani, K. J. Chem. Soc., Chem. Commu®93 773-4. (e) Lee, J,; 113 9880-2.

Brewer, M.; Berardini, M.; Brennan, Jnorg. Chem.1995 34, 3215-9. (13) Evans, W. J.; Gonzales, S. L.; Ziller, J. W.; Doedens, B. Ghem.

(f) Mashima, K.; Nakayama, Y.; Shibahara, T.; Fukumoto, H.; Nakamura, Soc., Chem. Commuh992 1138-9.

A. Inorg. Chem1996 35, 93—-6. (g) Berardini, M.; Brennan, horg. Chem. (14) For example, see: (a) Harkonen, G.; Leppanen, M.; Soininen, E.;
1995 34, 6179-85. Tornquist, R.; Viljanen, JJ. Alloys Compd1995 225 552-4. (b) Blasse,

(7) (a) Berg, D.; Burns, C.; Andersen, R. A.; Zalkin, Brganometallics G. J. Alloys Compd1995 225 529-33. (c) Karpinska, K.; Godlewski,
1989 8, 1865-70. (b) Evans, W.; Rabe, G.; Ziller, J.; Doedens]irrg. M.; Leskela, M.; Niinisto, L.J. Alloys Compd1995 225 544—6. (d) Ronda,
Chem.1994 33, 2719-26. C. R.J. Alloys Compd1995 225 534. (e) Pham-Thi, MJ. Alloys Compd.

(8) Green Sm(Il) chalcogenolates have precedéfce. 1995 225 547-51.
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chalcogen-rich reagents for subsequent cluster syntheses. Slow
addition of sulfur to Sm(SeP§} (prepared by reducing
PhSe with Sm/Hg amalgam) in dimethoxyethane (DME)
dissolved the precipitate, and the orange solution turned light
yellow, before a yellow solid precipitated. When less than a
full equivalent of S was addéd, light yellow air-sensitive
crystals of [SmS/(SePh)(DME)][Hgs(SePh)]-DME (2) were
isolated and characterized by low-temperature single-crystal
X-ray diffraction (Figure 2% The six seven-coordinate and

one eight-coordinate Sm(lll) (Sm3) ions in clusgform two
square pyramids that share onesSace with fourus-S?~ (S1,

S4, S6, S7) and twps-S?~ (S2, S5) capping the external faces

of the cluster, and one,-S?~ (S3) bridging two reentrant Sm

Figure 2. Molecular structure of the cation in [S®&(SePhy-

faces. Each Sm coordination sphere is saturated with a chelatind®ME)7] "[Hgs(SePhj] ~ (2) with the C and H atoms removed and the

DME ligand. The Hg(SePhj anion has no structural precedent,

but SePh abstraction from Ln by Hg(SePhas been noted pre-
viously1621 |n contrast tol, the visible spectrum of is

(15) For example, see: (a) Kumta, P. K.; Risbud, SJHMater. Sci.
1994 29, 1135-58. (b) Nishii, J.; Morimoto, S.; Yokota, R.; Yamagishi,

T. J. Non-Cryst. Solid4987, 956, 641-6. (c) Sanghara, J. S.; Busse, L.

E.; Aggarwall, I. D.J. Appl. Phys1994 75, 4885-91. (d) Katsugama, T.;
Matsumura, HJ. Appl. Phys1994 75, 2743-8.

(16) Lee, J.; Emge, T. J.; Brennan, J.I@org. Chem1997, 36, 5064~
8

(17) (a) Bond strengths in diatomic molecules (in kcal/mol): SmS93),
SmSe (79.1 3.5)17¢S—S (101.65),79S—Se (88.7+ 1.6)17¢(b) Fenochka,
B. V.; Gorkienko, S. PZh. Fiz. Khim.1973 47, 2445. (c) Nagai, S.;
Shinmei, M.; Yokokawa, TJ. Inorg. Nucl. Chem1974 36, 1904-5. (d)
Hubert, K. P.; Herzberg, GMolecular Spectra and Molecular Struc-
ture Constants of Diatomic Molecule¥an Nostrand: New York, 1979.
(e) Drowatrt, J.; Smoes, S. Chem. Soc., Faraday Trank977, 73, 1755-
67

(18) Sm reacts with/;,PhSeSePh to give Sm(Sephpantitatively. The
red product is very soluble in THE {ax= 409 nm), but only slightly soluble

in DME. See: Jongseong Lee, Ph.D. Thesis, Rutgers University, October

1996.

(19) Synthesis of2: PhSeSePh (0.94 g, 3.0 mmol) was added to a
Schlenk tube containing Sm (0.30 g, 2.0 mmol), Hg (0.15 g, 0.75 mmol),
and DME (50 mL). After 1 day a yellow precipitate had formed. After 2
days S was added (48 mg, 1.5 mmol) and the precipitate dissolved within
30 min. The reaction was stirred for an additional 1 day, after which the
yellow solution was filtered, concentrated to about 25 mL, and layered with 16.853(7) A,b = 17.642(9) A,c = 26.810(12)

O atom labels omitted for clarity. The Sa® bond lengths range from
2.66(2) to 2.93(2) A (average 2.79 A), and the -S&e bond lengths
range from 2.930(9) to 3.12(1) A and average 3.03 A. Long “bonds”
(8.4 A) from Sm4-S5 and Sm6&S2 are also included in the figure.
Thermal ellipsoids are shown at the 50% probability level.

featureless, which suggests that the visible absorptidémesults

from a S& to Sm(lll) charge transfer. Chalcogenido displace-
ment of chalcogenolate appears to be a general reaction: both
the redox inactive L## chalcogenolates and more covalent metal
selenolates (i.e. Hg(SeR&) react similarly.
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(20) Compouna crystallizes in the triclinic sEace growl, with a =
o = 107.28(43, 8 =

hexane (25 mL) to give pale yellow crystals (75 mg, 8%). The compound 98.14(4}, y = 105.67(43, V = 7112(6) B, Z = 2, pcaica = 2.161 glcn3

did not melt but turned golden around 24Q and continued to darken
with increasing temperature. Anal. Calcd for;@1145016Hg3S7SesSmy:

(Mo Ka at —120 °C). Full-matrix-block least-squares refinement with
4364 unique observation§ [> 40(F)] gaveR(F) = 0.108 and wRf?) =

C, 28.0; H, 3.00. Found: C, 26.8; H, 3.05. The compound does not show 0.240. Complete crystallographic details are given in the Supporting

an optical absorption maximum from 300 to 800 nm in THF. IR (Nujol):
2929 (s), 1571 (m), 1461 (s), 1378 (s), 1261 (w), 1190 (w), 1113 (w), 1095

Information.
(21) Berardini, M.; Emge, T. J.; Brennan, J. I@org. Chem.1995 34,

(w), 1044 (w), 857 (s), 823 (w), 807 (w), 732 (s), 690 (s), 664 (m), 464 (s) 5327-34.

cm . NMR (NGCsDs, 20 °C): 0 7.95 (14 H), 7.05 (21 H), 3.48 (32 H),
3.25 (48 H) (the SmSePh resonances were not observed).

(22) Melman, J.; Emge, T.; Brennan,@hem. Communin press.
(23) Okamoto, Y.; Yano, TJ. Organomet. Chenl971, 29, 99-103.



